Effect on Deformation Process of Adding a Copper Core to Multifilament MgB2 Superconducting Wire

نویسنده

  • M. H. Hancock
چکیده

Using the PIT method, multifilament wire with different packing strategies has been manufactured. In all, three types of wire have been investigated, a 19-filament configuration using ex-situ powder in an Fe-matrix and two 8-filament configurations in an Fe-matrix applying a copper core, one using in-situ and another using ex-situ powder. The effect on the annealing requirements during mechanical processing of adding such a copper core has been investigated. The results show that the number of required annealings drops by about a factor of one half with the addition of a copper core. This finding is supported by numerical simulations of the deformation process which indicate that tensile stresses are concentrated around the middle of the wire during the drawing process. As such, strategic packing of the multifilament configuration can reduce the need for annealing during the mechanical deformation process. It is also found that the multifilament configuration using in-situ powder requires less annealing than the ex-situ counterpart. This is most likely due to the fact that in-situ powder is more readily compacted than ex-situ powder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proposal of a Fully Superconducting Motor for Liquid Hydrogen Pump With MgB2 Wire

The outline design of a fully superconducting motor for liquid hydrogen pump with a magnesium-diboride (MgB2) superconducting wire is carried out to present various advantages arising from its prospective performances. The squirrel-cage rotor winding composed of superconducting loops with the MgB2 wire enables us to operate the motor not only in a slip mode but also in a synchronous rotation mo...

متن کامل

پیشرفتهای اخیر در زمینه ساخت سیم و نوار ابررسانای MgB2

 MgB2 wire and tape were prepared using the powder in tube and reaction in-situ technique. All samples were characterized using the XRD, SEM, TEM, as well as transport and magnetic measurements. High transport and magnetic critical current density values have been obtained for metal-clad wires and tapes. Different sheath materials have been examined, but Fe appears to be the best sheath for MgB...

متن کامل

Effect of ball milling on the local magnetic flux distribution and microstructure of in situ Fe/MgB2 conductors

The effects of the precursor milling energy on the superconducting and microstructural homogeneity of Fe-sheathed MgB2 monocore wires and tapes have been investigated. The conductors were produced by the powder-in-tube method using drawing and rolling deformation methods and in situ reaction. Combined magnetooptical, structural and magnetization measurements were performed on MgB2 superconducti...

متن کامل

Numerical study on the quench propagation in a 1.5T MgB2 MRI magnet design with varied wire compositions

To reduce the usage of liquid helium in MRI magnets, magnesium diboride (MgB2), a high temperature superconductor, has been considered for use in a design of conduction cooled MRI magnets. Compared to NbTi wires the normal zone propagation velocity (NZPV) in MgB2 is much slower leading to a higher temperature rise and the necessity of active quench protection. The temperature rise, resistive vo...

متن کامل

Three Dimensional FEM Quench Simulations of Superconducting Strands

The detailed phenomena in quench starting of Nb3Sn strands are simulated in 3-D and in time using ANSYS and FEMLAB programs. The current sharing between the superconductor and copper stabilizer in strands at the beginning of a quench was studied and displayed in time. The differences in copper configuration and RRR value of copper were found to have large effect to the stability and quench prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017